Stpm Maths T Assignment 2013 Sem 15113

 

\RTG

GH'R}KCGHRKL\

(R)

\R

SBCMR'\

GHMSHA

?JR?K?ekK<

Hssknmgcmt

O6

Ght`cghtklha

Gjbcaakmn

R`c

pjpuahtkjm

je

Hcbcs

gjsquktjcs rv`kl` lhrry t`c Bcmnuc

vkrus

lhm oc rmjbcacb

oy ka

bkeecrcmtkha

cquhtkjm

w`kl`

bcslrkocs t`c

rhtc

je

nrjwt`

je

t`c pjpuahtkjm. R`c pjpuahtkjm nrjwt`

.ut"

$

k,

bt

nkrr"m

oy₡ 6

rt(t-+),w`crc

r

ks

h

pjsktkvc

ljmsthmt hmb

H

ks t`c

lhrrykmn lhphlktv'

8

^`cm

t`c

pjpuahtkjm ks

sgh88,

t`c

rcahtkvc nrjwt`

rhtc

ks hagjst

ljmsthmt.

\&ht

bj

yju

umbcrsthmb

oy

t`c tcrg

rcahakvc

nrjw*t` rhtc:

?

(h)

\`jw t`ht

ke

t`c pjpuahtkjm

bjcs

mjt

cxlccb

kts

lhrrykmn

lhphlkty,

t`cm t`c

p,rrpuahtkjm kskmlrchskmn.

(o)

\`jw t`ht

ke

t`c

pjpuahtkjm

cxlccbs

kts lhrrykmn

lhphlkty, t`cm

t`c

pjpuahtkjm

ks bc,6rchskmn.

<

(q)

\uppjsc

t`ht t`c

kmktkha

pjpuahtkjm

ks

Tj.

Bksluss,

oy

ljmskbcmmn

t`c

sknm,,e

q,

t`c

b/

rcahtkjms`kp

octwccm

T

hmb

i

ke

T5

ks

acss

t`hm

/s

hmb

ke

Tj

ks

nrchtcr

t`hm i.

(o)

Bctcrgkmc

t`c vhaucs je

T

ejr

ljmsthmt

nrjwt`, kmlrchskmn nrjwt`

hmb

bclakmkmn

nrrrwt`.

2

Bctcrgkmc

t`c

ghxkgug

vhauc

je

n

hmb

kmtcrprct

t`c

gchmkmn je t`ks ghxkgug

vhau.c.

b8

3

Cxprcss

T km

tcrgs

je

r,

i

hmb

a.

Sskmn bkeecrcmt

kmktkha

pjpuahtkjm skzcs

Ts,

r,

&mb

i, pajt, jm

t`c

shgc hxcs, h

ecrm'

nrhp`s

tj s`jw

t`c

oc`hvkjr je T

vcrsus a.

5

R`c pjpuahtkjm

skzcs

je

t`c gjsquktjcs

km

h

lcrthkm

htch

ha

bkee'crcmt

tkgcs,

km

bhys, hrc

nkvcm

km

t`c

thoac

ocajw.

>'kgc

Mugocr

je gjsquktjcs

Rkgc

Mugocr

je gjsquktjcs

4<35<

;8

843

t?5

824

80?

?4<

?.?2

24-m

t?3

t;5

?24<85

<>83<2

54<

530?23?3?<??

<>8<;?

2452283423<;s5>>48>8?>>5

>;8>;2>;58;0

>;;044044

 

STPM MATHEMATICS (T) – ASSIGNMENT B: MATHEMATICAL MODELLING (2013)STEPHEN, P. Y. BONG (APRIL 2013) Page

2

of 

11

ASSIGNMENT PROBLEMS

The population of Aedes mosquitoes which carry the Dengue virus can be modeled by adifferential equation which describes the rate of growth of the population. The populationgrowth rate

dd

P t 

is given by

d1d

P P rP t k 

 = −  

, where

is a positive constant and

is thecarrying capacity.1.

When the population is small, the relative growth rate is almost constant. What do youunderstand by the term relative growth rate?2.

(

a

) Show that if the population does not exceed its carrying capacity, then the populationis increasing.(

b

) Show that if the population exceeds its carrying capacity, then the population isdecreasing.3.

(

a

) Suppose that the initial population is

P

0

. Discuss, by considering the sign of 

dd

P t 

, therelationship between

P

and

if 

P

0

is less than

and if 

P

0

is greater than

.(

b

)Determine the value of 

P

for constant growth, increasing growth and declining growth.4.

Determine the maximum value of 

dd

P t 

and interpret the meaning of this maximum value.5.

Express

P

in terms of 

,

and

. Using different initial population sizes

P

0

,

, and

, plot,on the same axes, a few graphs to show the behavior of 

P

versus

.6.

The population sizes of the mosquitoes in a certain area at different times, in days, aregiven in the table below.

Time Number of mosquitoes Time Number of mosquitoes

0 49 245 70135 77 252 71263 125 322 77691 196 371 791105 240 392 794126 316 406 796140 371 441 798182 534 504 799203 603 539 800224 658 567 800It is interesting to determine the carrying capacity and the growth rate based on the above datato control the population of Aedes mosquitoes. Using different values of 

P

and

, plot

P

 / 

against

P

and hence obtain the approximate values for

and

.

Categories: 1

0 Replies to “Stpm Maths T Assignment 2013 Sem 15113”

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *